首页    期刊浏览 2025年07月01日 星期二
登录注册

文章基本信息

  • 标题:A Separable Prediction Error Method for Robot Identification
  • 本地全文:下载
  • 作者:Mathieu Brunot ; Alexandre Janot ; Francisco Carrillo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:21
  • 页码:487-492
  • DOI:10.1016/j.ifacol.2016.10.650
  • 语种:English
  • 出版社:Elsevier
  • 摘要:The Prediction Error Method, developed in the field of system identification, handles the identification of discrete time noise model for systems linear with respect to the states and the parameters. However, robots are represented by continuous time models, which are not linear with respect to the states. In this article, we consider the issue of robot identification, taking into account the physical parameters as well as the noise model in order to improve the accuracy of the estimates. Thus, we developed a new technique to tackle this problem. The experimental results tend to show a real improvement in the estimation accuracy.
  • 关键词:Robots identificationSystem identificationClosed-loop identificationPredictions error methodsOutput error identification
国家哲学社会科学文献中心版权所有