首页    期刊浏览 2025年05月23日 星期五
登录注册

文章基本信息

  • 标题:Mental Workload Recognition by Combining Wavelet Packet Transform and Kernel Spectral Regression Techniques
  • 本地全文:下载
  • 作者:Yongcun Wang ; Jianhua Zhang ; Rubin Wang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:19
  • 页码:561-566
  • DOI:10.1016/j.ifacol.2016.10.626
  • 语种:English
  • 出版社:Elsevier
  • 摘要:A Mental Workload (MWL) recognition system was developed based on psychophysiological data to assess temporal variations in MWL levels. Salient EEG features were first extracted by using fuzzy mutual-information-based wavelet-packet transform (FMI-WPT). Then we adopted the kernel spectral regression linear discriminant analysis (KSRDA) to reduce the EEG feature dimensionality and to simultaneously enhance the inter-class discrimination capacity of the MWL classifiers. By combining FMIWPT and KSRDA techniques, we designed, evaluated and compared different types of MWL classifiers. The results demonstrated a improvement of the MWL classification accuracy by the proposed feature reduction method and classifier design framework. Particularly, it was shown by extensive comparative studies that the KNN and SVM outperform other classifiers.
  • 关键词:mental workloadfuzzy mutual-information based wavelet packet transformKernel spectral regression discriminant analysisphysiological signals
国家哲学社会科学文献中心版权所有