首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Polynomial Time Approximation Scheme for the Minimum-weight k-Size Cycle Cover Problem in Euclidean space of an arbitrary fixed dimension
  • 本地全文:下载
  • 作者:Michael Khachay ; Katherine Neznakhina
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:12
  • 页码:6-10
  • DOI:10.1016/j.ifacol.2016.07.541
  • 语种:English
  • 出版社:Elsevier
  • 摘要:We study the Min-k-SCCP on the partition of a complete weighted digraph by k vertex-disjoint cycles of minimum total weight. This problem is the generalization of the well-known traveling salesman problem (TSP) and the special case of the classical vehicle routing problem (VRP). It is known that the problem Min-k-SCCP is strongly NP-hard and remains intractable even in the geometric statement. For the Euclidean Min-k-SCCP in R d , we construct a polynomial-time approximation scheme, which generalizes the approach proposed earlier for the planar Min-2-SCCP. For any fixed c > 1, the scheme finds a (1 + 1/c)-approximate solution in time of O(nd+1(k log n)(O (√dc))d-1 2k).
  • 关键词:cycle cover of size k traveling salesman problem (TSP)NP-hard problempolynomial-time approximation scheme (PTAS)
国家哲学社会科学文献中心版权所有