首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Box Regularized Particle Filter for terrain navigation with highly non-linear measurements * * The authors would like to thank the COGENT Computing lab (Coventry University) for their financial support.
  • 本地全文:下载
  • 作者:Nicolas Merlinge ; Karim Dahia ; Hélène Piet-Lahanier
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:17
  • 页码:361-366
  • DOI:10.1016/j.ifacol.2016.09.062
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper addresses the design of a new set-membership particle filter named Box Regularized Particle Filter (BRPF) applied to terrain navigation. This algorithm combines the set-membership particle estimation (known as Box Particle Filter) with the Kernel estimation method. This approach makes possible to enhance significantly the filter’s robustness while reducing the computation time (only 200 particles are needed instead of 5,000 with a conventional Sequential Importance Resampling (SIR) Particle Filter). Numerical results are presented from 10,000 Monte-Carlo runs.
  • 关键词:Particle FilterSet-Membership EstimationRegularized Particle FilterInertial Navigation UpdateRadar AltimeterDigital Terrain Elevation DataMonte Carlo methods
国家哲学社会科学文献中心版权所有