首页    期刊浏览 2025年06月10日 星期二
登录注册

文章基本信息

  • 标题:Combined Geometric and Neural Network Approach to Generic Fault Diagnosis in Satellite Actuators and Sensors
  • 本地全文:下载
  • 作者:P. Baldi ; M. Blanke ; P. Castaldi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:17
  • 页码:432-437
  • DOI:10.1016/j.ifacol.2016.09.074
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper presents a novel scheme for diagnosis of faults affecting the sensors measuring the satellite attitude, body angular velocity and flywheel spin rates as well as defects related to the control torques provided by satellite reaction wheels. A nonlinear geometric design is used to avoid that aerodynamic disturbance torques have unwanted influence on the residuals exploited for fault detection and isolation. Radial basis function neural networks are used to obtain fault estimation filters that do not need a priori information about the fault internal models. Simulation results are based on a detailed nonlinear satellite model with embedded disturbance description. The results document the efficacy of the proposed diagnosis scheme.
  • 关键词:Fault diagnosisgeometric approachesneural networksactuatorssensorssatellite control applications
国家哲学社会科学文献中心版权所有