首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A Data-driven Fault Detection Method Based on Dissipative Trajectories
  • 本地全文:下载
  • 作者:Qingyang Lei ; Muhammad Tajammal Munir ; Jie Bao
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:7
  • 页码:717-722
  • DOI:10.1016/j.ifacol.2016.07.266
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Fault detection is becoming increasingly important as the complexity of industrial process develops. In this paper, a data-driven fault detection method is proposed. The dissipativity theory is adopted to find the appropriate dissipativity properties for the process input output trajectory. The dissipativity properties can be viewed as an Abstract energy property, and the dissipativity properties of input output trajectories represent process dynamic features. As faults occur, the dissipative trajectories will change thus allow fault detection to be performed based on these dissipativity properties. A training algorithm is developed to search for the related properties using input output data. A prior knowledge of the process can be incorporated into the algorithm to facilitate the training. The proposed fault detection method is illustrated on a case study of a mono-chlorobenzene plant simulated using VMGSim.
  • 关键词:Dissipativity TheoryDissipative TrajectoryFault DetectionData-driven
国家哲学社会科学文献中心版权所有