首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Model Identification using Continuous Glucose Monitoring Data for Type 1 Diabetes * * This work has been funded by the Danish Diabetes Academy supported by the Novo Nordisk Foundation.
  • 本地全文:下载
  • 作者:Dimitri Boiroux ; Morten Hagdrup ; Zeinab Mahmoudi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:7
  • 页码:759-764
  • DOI:10.1016/j.ifacol.2016.07.279
  • 语种:English
  • 出版社:Elsevier
  • 摘要:This paper addresses model identification of continuous-discrete nonlinear models for people with type 1 diabetes using sampled data from a continuous glucose monitor (CGM). We compare five identification techniques: least squares, weighted least squares, Huber regression, maximum likelihood with extended Kalman filter and maximum likelihood with unscented Kalman filter. We perform the identification on a 24-hour simulation of a stochastic differential equation (SDE) version of the Medtronic Virtual Patient (MVP) model including process and output noise. We compare the fits with the actual CGM signal, as well as the short- and long-term predictions for each identified model. The numerical results show that the maximum likelihood-based identification techniques offer the best performance in terms of fitting and prediction. Moreover, they have other advantages compared to ODE-based modeling, such as parameter tracking, population modeling and handling of outliers.
  • 关键词:Type 1 diabetesparameter identificationcontinuous glucose monitoringleast squaresHuber regressionmaximum likelihood
国家哲学社会科学文献中心版权所有