首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Strong H  variations from an 11 Gyr-old host star: a planetary origin?
  • 本地全文:下载
  • 作者:V. Bourrier ; V. Bourrier ; D. Ehrenreich
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2017
  • 卷号:602
  • 页码:1-12
  • DOI:10.1051/0004-6361/201730542
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Kepler-444 provides a unique opportunity to probe the atmospheric composition and evolution of a compact system of exoplanets smaller than the Earth. Five planets transit this bright K star at close orbital distances, but they are too small for their putative lower atmosphere to be probed at optical/infrared wavelengths. We used the Space Telescope Imaging Spectrograph instrument on board the Hubble Space Telescope to search for the signature of the planet’s upper atmospheres at six independent epochs in the Lyman-α line. We detect significant flux variations during the transits of both Kepler-444 e and  f (~20%), and also at a time when none of the known planets was transiting (~40%). Variability in the transition region and corona of the host star might be the source of these variations. Yet, their amplitude over short timescales (~2−3 h) is surprisingly strong for this old (11.2 ± 1.0 Gyr) and apparently quiet main-sequence star. Alternatively, we show that the in-transit variations could be explained by absorption from neutral hydrogen exospheres trailing the two outer planets (Kepler-444 e and  f). They would have to contain substantial amounts of water to replenish hydrogen exospheres such as these, which would reveal them to be the first confirmed ocean planets. The out-of-transit variations, however, would require the presence of an as-yet-undetected Kepler-444 g at larger orbital distance, casting doubt on the planetary origin scenario. Using HARPS-N observations in the sodium doublet, we derived the properties of two interstellar medium clouds along the line of sight toward Kepler-444. This allowed us to reconstruct the stellar Lyman-α line profile and to estimate the extreme-UV (XUV) irradiation from the star, which would still allow for a moderate mass loss from the outer planets after 11.2 Gyr. Follow-up of the system at XUV wavelengths will be required to assess this tantalizing possibility.
  • 关键词:enplanetary systemsstars: individual: Kepler-444planets and satellites: atmospherestechniques: spectroscopic
国家哲学社会科学文献中心版权所有