首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Effects of caffeine (3 mg) on maximal oxygen consumption, plasmatic lactate and reaction time after maximum effort. (Efectos de la utilización de 3 mg de cafeína sobre los niveles de potencia aeróbica máxima, de lactato plasmático y del tiempo de reacción simple, ambos después de la realización de esfuerzo máximo).
  • 本地全文:下载
  • 作者:Sandra Bahia Ramos ; Paula Fernandes de Aguiar ; Ana Cristina Lopes
  • 期刊名称:RICYDE. Revista Internacional de Ciencias del Deporte. doi:10.5232/ricyde
  • 印刷版ISSN:1885-3137
  • 出版年度:2006
  • 卷号:2
  • 期号:5
  • 页码:42-52
  • 语种:English
  • 出版社:Ramón Cantó Alcaraz (Publisher)
  • 摘要:Abstract The stimulants caffeine effects on sport performance have been widely investigated. The Maximal Oxygen Uptake (MOU) has been used in recent researches which aim to elucidate mechanisms of caffeine during maximal effort. As a physiological pattern to evaluate the effect of caffeine during the effort and after it (recovery), plasmatic lactate is presented in many studies. In this context, the present study aimed to investigate physiological changes: VO2 MAX on an ergometric device (speed and grade on a treadmill); plasmatic lactate (L) and modification of cognitive and motor performance (Reaction Time Test – RTT) produced by caffeine. Five apparently healthy volunteers (26 ± 5 years; 67 ± 12.5 kg) were submitted twice to the following routine: plasmatic lactate at rest (L 0), reaction time test at rest RTT (R), maximum effort test on treadmill, plasmatic lactate concentrations at minute 1 (L 1), 2 (L 2) and 4 (L 3) after effort, and RTT (1). They were given either one placebo capsule (400 mg corn starch) or caffeine (3 mg/kg of body weight). Two-way ANOVA with repetition was used to compare variables at placebo (P) and caffeine (C) moments. The caffeine moment presented non- significant reduction in RRT, non-significant increase in plasmatic lactate and non-significant modification in VO2 MAX, when compared to placebo moment. Thus, one can conclude that 3 mg/kg/bw of caffeine with 12 h of abstinence, presented non-significant effects in maximal oxygen uptake, plasmatic lactate and in simple reaction time. Key words / palabras clave : cafeina | VO2 MAX | lactato plasmatico | tiempo de reaccion | caffeine | plasmatic lactate | reaction time Resumen Los efectos estimulantes de la cafeína en el rendimiento deportivo vienen siendo ampliamente investigados. El Consumo Máximo de Oxígeno (VO2 MAX) ha sido empleado en estudios recientes que buscan elucidar los mecanismos de la cafeína durante el esfuerzo máximo a través de métodos neurológicos así como fisiológicos. En este contexto, este estudio tiene el objetivo de analizar las variaciones generadas por la cafeína en respuestas ergoespirométrica (VO2 MAX), plasmática (Lactato-L) y motora (Test del Tiempo de Reacción – TTR). Para eso, 5 individuos aaparentemente saludables, todos hombres, (26 ± 5 años, 67 ± 12,5 kg) se sometieron dos veces a la siguiente rutina: medición de lactato plasmático (L0), TTR (0), test de esfuerzo máximo en cinta ergométrica, medición de lactato (L1), (L2), (L3), y TTR(1). Les fue administrada una cápsula de 400 mg de placebo (almidón de maíz) o 3 mg/kg de peso corporal (pc) de cafeína. Fue empleada la ANOVA de dos factores con repetición para la comparación de las variables en los momentos C, P. El momento cafeína presentó reducción no significativa en el tiempo de reacción, en el lactato plasmático y en VO2 MAX. Así, se puede concluir que cafeína 3 mg/kg/pc con abstinencia de 12 h. no presenta efectos significativos en el consumo máximo de oxígeno, así como en la concentración de lactato plasmático y en el tiempo de reacción simple. doi:10.5232/ricyde2006.00504 --------------------------------------------------------------------- References/referencias Anselme, F., Collomp, K., Mercier, B., ahmaidi, S., Prefaut, C. (1992) Caffeine increases maximal anaerobic power and blood lactate concentration. Eur. J. Appl. Physiol. Occup. Physiol. 65: 188–191. doi:10.1007/BF00705079 Bridge, C. A., Jones, M. A. (2006) The effect of caffeine ingestion on 8 km run performance in a field setting. J. Sports Sci. 24(4): 433-9. doi:10.1080/02640410500231496 PMid:16492607 Calderón, J., Benito, P., Meléndez, A., González, M. (2006). Control biológico del entrenamiento de resistencia. Revista Internacional de Ciencias del Deporte. 2 (2), 65-87. doi:10.5232/ricyde2006.00205 Cauli, O., Morelli, M. (2005) Caffeine and the dopaminergic system. Behav. Pharmacol. 16(2): 63-77. doi:10.1097/00008877-200503000-00001 PMid:15767841 Collomp, K., S. Ahmaidi, M. Audran, J.-L. Chanal, C. Prefaut (1991) Effects of caffeine ingestion on performance and anaerobic metabolism during the Wingate test. Int. J. Sports Med. 12: 439–443. doi:10.1055/s-2007-1024710 PMid:1752708 Collomp, K., Ahmaidi, S., Chatard, J. C., Audran, M., Prefaut, C. (1992) Benefits of caffeine ingestion on sprint performance in trained and untrained swimmers. Eur. J. Appl. Physiol. Occup. Physiol. 64: 377–380. doi:10.1007/BF00636227 Collomp, K., Candau R, Millet, G, Mucci, P, Borrani, F., Prefaut, C., de Ceaurriz, J. (2002) Effects of salbutamol and caffeine ingestion on exercise metabolism and performance. Int J Sports Med. 23(8):549-54. doi:10.1055/s-2002-35530 PMid:12439769 Dalvi, R.R. (1986) Acute and chronic toxicity of caffeine: A review. Vet. Hum. Toxicology, 28:144-150. PMid:2871652 Delbeke, F.T., Debachere, M. (1984) Caffeine: use and abuse in sports. International Journal of Sports Medicine 5(4): 179-82. doi:10.1055/s-2008-1025901 PMid:6480201 Doherty, M., Smith, P., Hughes, M., Davison, R. (2004) Caffeine lowers perceptual response and increases power output during high-intensity cycling. J. Sports Sci. 22 (7): 637-43. doi:10.1080/02640410310001655741 PMid:15370494 Gaesser, G. A., Poole, D. C. (1996) The slow component of oxygen uptake kinetics in humans. In: Exercise and Sport Sciences Reviews, ed. Holloszy O, William & Wilkins, Baltimore, 24: 35–70. PMid:8744246 Graham, T. E., Spriet, L. L. (1991) Performance and metabolic responses to a high caffeine dose during prolonged exercise. J. Appl. Physiol. 71: 2292-2298. PMid:1778925 Graham, T. E., Rush, J. W. E., Van Soeren, M. H. (1994) Caffeine and exercise: metabolism and performance. Can. J. Appl. Physiol. 19: 111–138. PMid:8081318 Haller, CA., Jacob, P. 3RD, Benowitz, NL. (2004) Enhanced stimulant and metabolic effects of combined ephedrine and caffeine. Clin Pharmacol Ther. 75(4):259-73. doi:10.1016/j.clpt.2003.11.375 Jacobson, B.H., Kulling, F.A. (1989) Health and ergogenic effects of caffeine. British Journal of Sports Medicine 23(1): 34-40. doi:10.1136/bjsm.23.1.34 PMid:2659130 PMCid:1478653 Juliano, L. M. Groffiths, R. R. (2004) A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology (Berl). 176 (1):1-29. doi:10.1007/s00213-004-2000-x PMid:15448977 James, J. E.; Rogers, P. J. (2005) Effects of caffeine on performance and mood: withdrawal reversal is the most plausible explanation Psychopharmacology 182: 1–8 doi:10.1007/s00213-005-0084-6 PMid:16001109 Kovacs, E., Steagen, M. R., Jos, H. C. H., Brouns, F. (1998) Effect of caffeinated drinks on substrate metabolism, caffeine excretion, and performance. J. Appl. Physiol. 85(2): 709-715. PMid:9688750 Laurent, D., Schneider, K. E., Prusaczyk, W. K., Franklin, C., Vogel, S. M., Krssak, M., Petersen, K. F., Goforth, H. W., Shulman, G. I. (2000) Effects of caffeine on muscle glycogen utilization and the neuroendocrine axis during exercise. J Clin Endocrinol Metab 85: 2170–2175. doi:10.1210/jc.85.6.2170 Myers, J., walsh, D., Sullivan, M., Froelicher, V. F. (1989) Can maximal cardiopulmonary capacity be recognized by a plateau in oxygen uptake? Chest., 96: 1312-1316. doi:10.1378/chest.96.6.1312 PMid:2582837 Myers, J., Walsh, D., Sullivan, M., Froelicher, V. F. (1990) Effects of sampling on variability and plateau in oxygen uptake. Journal of Applied Physiology 68: 404-410 PMid:2312484 Nehlig, A., Debry, G. (1994) Caffeine and sports activity: a review. Int. J. Sports Med. 15: 215–223. doi:10.1055/s-2007-1021049 PMid:7960313 Noakes, T. D. (1988) Implications of exercise testing for prediction of athletic performance: A contemporary perspective. Medicine and Science Sports Exercise. 20: 319-330. doi:10.1249/00005768-198808000-00001 Pasman, W. J., Baak, M. A., Jeukendrup, A. E., Haan, A. (1995) The effect of different dosages of caffeine on endurance performance time. Int. J. Sports Med. 16(4): 225-330. doi:10.1055/s-2007-972996 PMid:7657415 Poole, D. C., Schaffartzik, W., Knight, D. R., Derion, T., Kennedy B., Guy, H. J., Prediletto, R., Wagner, P. D. (1991) Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J. Appl. Physiol. 71: 1245–1260. PMid:1757346 Shinohara, M., Moritani, T. (1992) Increase in neuromuscular activity and oxygen uptake during heavy exercise. Ann. Physiol. Anthropol. 11: 257–262. PMid:1642722 Sinclair, C. J., Geiger, J. D. (2000) Caffeine use in sports. A pharmacological review. J. Sports Med. Phys. Fitness 40: 71–79. PMid:10822912 Van Thuyne, W., Delbeke, F. T. (2005) Distribution of Caffeine Levels in Urine in Different Sports in Relation to Doping Control Before and After the Removal of Caffeine from the WADA Doping List. Int J Sports Med. 26: 714-718. doi:10.1055/s-2005-837437 PMid:16237615 ---------------------------------------------------------------------
  • 关键词:cafeina;VO2 MAX;lactato plasmatico;tiempo de reaccion;caffeine;plasmatic lactate;reaction time
国家哲学社会科学文献中心版权所有