首页    期刊浏览 2024年09月06日 星期五
登录注册

文章基本信息

  • 标题:Control biológico del entrenamiento de resistencia. (Biological control of endurance training).
  • 本地全文:下载
  • 作者:Francisco Javier Calderón Montero ; Pedro José Benito Peinado ; Agustín Meléndez-Ortega
  • 期刊名称:RICYDE. Revista Internacional de Ciencias del Deporte. doi:10.5232/ricyde
  • 印刷版ISSN:1885-3137
  • 出版年度:2006
  • 卷号:2
  • 期号:2
  • 页码:65-87
  • 语种:Spanish
  • 出版社:Ramón Cantó Alcaraz (Publisher)
  • 摘要:La alta exigencia en los deportistas de élite hace cada vez más necesario controlar el proceso de adaptación al entrenamiento. El objetivo de esta revisión es analizar la información biológica de un análisis de sangre, al objeto de obtener información de la carga de entrenamiento en atletas de resistencia. La mayor parte de los parámetros sanguíneos han sido empleados, más que para determinar el proceso del entrenamiento, precisamente, para lo opuesto: el sobreentrenamiento. La concentración en plasma de sustratos metabólicos (glucosa y ácidos grasos) no son parámetros que puedan utilizarse para controlar el entrenamiento, debido a las bajas especificidad y sensibilidad. No obstante, la concentración de determinados enzimas que intervienen en la utilización de los sustratos puede ser importante. Valores de creatín kinasa superiores a 200 U/l en una persona sana sugiere claramente que la carga de entrenamiento total de una determinada sesión ha sido elevada. La concentración en plasma de algún producto de degradación del catabolismo también puede señalar la adaptación del organismo al entrenamiento. La concentración de ácido láctico en plasma es la herramienta más común en la valoración de la carga de entrenamiento. La concentración de urea es un buen marcador biológico de la carga de entrenamiento. Valores superiores a 8 mmol/l en varones y de 6,5 mmol/l en mujeres, indican que el entrenamiento ha sido muy intenso. La determinación de otros productos (amonio) o sustratos (glutamina) se han utilizado para detectar el sobreentrenamiento. Palabras clave / key words : entrenamiento | rendimiento | control biologico | training | performance | biological control Abstract The high exigency in the elite sportsmen does more necessary to control the process of training adaptation. The purpose of this review is to analyze the biological information of a blood analysis to obtain data of load training in endurance athletes. Most blood parameters has been used to evaluate the overtraining state instead of determining the training process. The plasma concentrations of metabolic substrates (glucose and fatty acids) are not parameters that can be used to control the training, due to their low specificity and sensitivity. However, the concentration of certain enzymes that takes part in the use of the substrates can be important. Creatin kinase values higher than 200 U/l, in healthy persons suggest that the total load of the training session has been elevated. The plasma concentration of some product of catabolism can also indicate the adaptation of the organism to the training. Lactic concentration in plasma is used frequently in the control of training load. The urea concentration is a good biological marker of training load. Higher values than 8 mmol/l in male and of 6.5 mmol/l in female, indicate that the training has been very hard. The determination of other products (ammonium) or substrates (glutamine) has been used to detect the overtraining. doi:10.5232/ricyde2006.00205 --------------------------------------------------------------------- Referencias/references Billat, L. V. (1996). Use of blood lactate measurements for prediction of exercise performance and for control of training. Recommendations for long-distance running. Sports Med, 22(3), 157-175. doi:10.2165/00007256-199622030-00003 PMid:8883213 Fukuba, Y., Walsh, M. L., Cameron, B. J., Morton, R. H., Kenny, C. T., & Banister, E. W. (1992). The clearance rate of exercise-elevated blood lactate following physical training. Ann Physiol Anthropol, 11(3), 369-376. PMid:1642738 Gastmann, U. A., & Lehmann, M. J. (1998). Overtraining and the BCAA hypothesis. Med Sci Sports Exerc, 30(7), 1173-1178. doi:10.1097/00005768-199807000-00025 Guezennec, C. Y., Abdelmalki, A., Serrurier, B., Merino, D., Bigard, X., Berthelot, M., et al. (1998). Effects of prolonged exercise on brain ammonia and amino acids. Int J Sports Med, 19(5), 323-327. doi:10.1055/s-2007-971925 PMid:9721055 Hagerman, F. C. (1984). Applied physiology of rowing. Sports Med, 1(4), 303-326. doi:10.2165/00007256-198401040-00005 PMid:6390606 Harris, P. A., Marlin, D. J., & Gray, J. (1998). Plasma aspartate aminotransferase and creatine kinase activities in thoroughbred racehorses in relation to age, sex, exercise and training. Vet J, 155(3), 295-304. doi:10.1016/S1090-0233(05)80026-7 Hartmann, U., & Mester, J. (2000). Training and overtraining markers in selected sport events. Med Sci Sports Exerc, 32(1), 209-215. doi:10.1097/00005768-200001000-00031 Hug, M., Mullis, P. E., Vogt, M., Ventura, N., & Hoppeler, H. (2003). Training modalities: over-reaching and over-training in athletes, including a study of the role of hormones. Best Pract Res Clin Endocrinol Metab, 17(2), 191-209. doi:10.1016/S1521-690X(02)00104-5 Layman, D. K. (2002). Role of leucine in protein metabolism during exercise and recovery. Can J Appl Physiol, 27(6), 646-663. PMid:12501002 Lehmann, M., Dickhuth, H. H., Gendrisch, G., Lazar, W., Thum, M., Kaminski, R., et al. (1991). Training-overtraining. A prospective, experimental study with experienced middle- and long-distance runners. Int J Sports Med, 12(5), 444-452. doi:10.1055/s-2007-1024711 PMid:1752709 Manetta, J., Brun, J. F., Mercier, J., & Prefaut, C. (2000). The effects of exercise training intensification on glucose disposal in elite cyclists. Int J Sports Med, 21(5), 338-343. doi:10.1055/s-2000-3781 PMid:10950442 Millet, G. P., & Vleck, V. E. (2000). Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: review and practical recommendations fortraining. Br J Sports Med, 34(5), 384-390. doi:10.1136/bjsm.34.5.384 PMid:11049151 PMCid:1756235 Parry-Billings, M., Budgett, R., Koutedakis, Y., Blomstrand, E., Brooks, S., Williams, C., et al. (1992). Plasma amino acid concentrations in the overtraining syndrome: possible effects on the immune system. Med Sci Sports Exerc, 24(12), 1353-1358. PMid:1470018 Petibois, C., Cazorla, G., & Deleris, G. (2003). The biological and metabolic adaptations to 12 months training in elite rowers. Int J Sports Med, 24(1), 36-42. doi:10.1055/s-2003-37194 PMid:12582950 Petibois, C., Cazorla, G., Poortmans, J. R., & Deleris, G. (2002). Biochemical aspects ofovertraining in endurance sports: a review. Sports Med, 32(13), 867-878. doi:10.2165/00007256-200232130-00005 PMid:12392446 Petibois, C., Cazorla, G., Poortmans, J. R., & Deleris, G. (2003). Biochemical aspects of overtraining in endurance sports : the metabolism alteration process syndrome. Sports Med, 33(2), 83-94. doi:10.2165/00007256-200333020-00001 PMid:12617688 Rennie, M. J., & Tipton, K. D. (2000). Protein and amino acid metabolism during and after exercise and the effects of nutrition. Annu Rev Nutr, 20, 457-483. doi:10.1146/annurev.nutr.20.1.457 PMid:10940342 Rowbottom, D. G., Keast, D., & Morton, A. R. (1996). The emerging role of glutamine as an indicator of exercise stress and overtraining. Sports Med, 21(2), 80-97. doi:10.2165/00007256-199621020-00002 PMid:8775515 Rumley, A. G., Pettigrew, A. R., Colgan, M. E., Taylor, R., Grant, S., Manzie, A., et al. (1985). Serum lactate dehydrogenase and creatine kinase during marathon training. Br J Sports Med, 19(3), 152-155. doi:10.1136/bjsm.19.3.152 PMid:4075065 PMCid:1478243 Seene, T., Kaasik, P., Alev, K., Pehme, A., & Riso, E. M. (2004). Composition and turnover of contractile proteins in volume-overtrained skeletal muscle. Int J Sports Med, 25(6), 438-445. doi:10.1055/s-2004-820935 PMid:15346232 Smith, D. J. (2003). A framework for understanding the training process leading to elite performance. Sports Med, 33(15), 1103-1126. doi:10.2165/00007256-200333150-00003 PMid:14719980 Tabata, I., Atomi, Y., & Miyashita, M. (1984). Blood glucose concentration dependent ACTH and cortisol responses to prolonged exercise. Clin Physiol, 4(4), 299-307. doi:10.1111/j.1475-097X.1984.tb00805.x PMid:6088160 Temple, M. Y., Bar-Or, O., & Riddell, M. C. (1995). The reliability and repeatability of the blood glucose response to prolonged exercise in adolescent boys with IDDM. Diabetes Care, 18(3), 326-332. doi:10.2337/diacare.18.3.326 PMid:7555475 Tipton, K. D., & Wolfe, R. R. (1998). Exercise-induced changes in protein metabolism. Acta Physiol Scand, 162(3), 377-387. doi:10.1046/j.1365-201X.1998.00306.x PMid:9578384 Tipton, K. D., & Wolfe, R. R. (2001). Exercise, protein metabolism, and muscle growth. Int J Sport Nutr Exerc Metab, 11(1), 109-132. PMid:11255140 Urhausen, A., Gabriel, H., & Kindermann, W. (1995). Blood hormones as markers of training stress and overtraining. Sports Med, 20(4), 251-276. doi:10.2165/00007256-199520040-00004 PMid:8584849 Urhausen, A., & Kindermann, W. (2002). Diagnosis of overtraining: what tools do we have? Sports Med, 32(2), 95-102. doi:10.2165/00007256-200232020-00002 PMid:11817995 Varlet-Marie, E., Maso, F., Lac, G., & Brun, J. F. (2004). Hemorheological disturbances in the overtraining syndrome. Clin Hemorheol Microcirc, 30(3-4), 211-218. PMid:15258345 Yuan, Y., So, R., Wong, S., & Chan, K. M. (2002). Ammonia threshold--comparison to lactate threshold, correlation to other physiological parameters and response to training. Scand J Med Sci Sports, 12(6), 358-364. doi:10.1034/j.1600-0838.2002.00185.x PMid:12453163 Zendzian-Piotrowska, M., & Gorski, J. (1993). Metabolic adaptation to daily exercise of moderate intensity to exhaustion in the rat. Eur J Appl Physiol Occup Physiol, 67(1), 77- 82. doi:10.1007/BF00377709 ---------------------------------------------------------------------
  • 关键词:entrenamiento;rendimiento;control biologico;training;performance;biological control
国家哲学社会科学文献中心版权所有