首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Estimating the parameters of the normal, exponential and gamma distributions using median and extreme ranked set samples
  • 本地全文:下载
  • 作者:A.-B Shaibu ; Hassen A. Muttlak
  • 期刊名称:Statistica
  • 印刷版ISSN:1973-2201
  • 出版年度:2004
  • 卷号:64
  • 期号:1
  • 页码:75-98
  • DOI:10.6092/issn.1973-2201/25
  • 语种:English
  • 出版社:Dep. of Statistical Sciences "Paolo Fortunati", Università di Bologna
  • 摘要:In this paper, we propose maximum likelihood estimators (mle’s) as well as linear un-biased estimators (lue’s) of the parameters of the normal, exponential and gamma distri-butions in the light of the location-scale family of distributions - i.e. distributions with cumulative distribution functions of the form F ((x – µ)/?), using median ranked set sam-pling (MRSS) and extreme ranked set sampling (ERSS). MRSS and ERSS are modifica-tions of ranked set sampling (RSS), which are more practicable and less prone to prob-lems resulting from erroneous ranking. The mle’s of the normal mean and the scale pa-rameters of the exponential and gamma distributions under MRSS are shown to dominate all other estimators, while the mle of the normal standard deviation under ERSS is the most efficient. A similar trend is observed in the lue’s. A modification of ERSS namely partial extreme ranked set sampling (PERSS) is proposed for odd set sizes to generate even-sized samples. The lue of the normal standard deviation under this modification is shown to be the most efficient of all the lue’s of the same parameter. Among the lue’s considered, the PERSS lue’s are the most efficient when the sample size per cycle is two.
国家哲学社会科学文献中心版权所有