首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:The crisis early warning of the quality of supply chain based on rough set&feature weighted support vector machine
  • 本地全文:下载
  • 作者:Xiu-lian Hu ; Xiu-lian Hu ; Dan Liu
  • 期刊名称:MATEC Web of Conferences
  • 电子版ISSN:2261-236X
  • 出版年度:2017
  • 卷号:119
  • 页码:1-9
  • DOI:10.1051/matecconf/201711901039
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:A Rough Set&Feature Weighted Support Vector Machine(RS-FWSVM) model is proposed for the quality of supply chain crisis early-warning, which aims at some problems of the quality of supply chain. This model combines the advantages of the RS and FWSVM, which can get classification per-formances by changing the weights of different linear functions in the feature space. Application process of this model to the crisis early warning of SCQ is researched, which can help enable chain enterprises to identify crises in the process of operations and to predict possible crises.
国家哲学社会科学文献中心版权所有