首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Spatially resolved spectroscopy across stellar surfaces - II. High-resolution spectra across HD 209458 (G0 V)
  • 其他标题:II. High-resolution spectra across HD 209458 (G0 V)
  • 本地全文:下载
  • 作者:Dainis Dravins ; Dainis Dravins ; Hans-Günter Ludwig
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2017
  • 卷号:605
  • 页码:1-12
  • DOI:10.1051/0004-6361/201730901
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Context. High-resolution spectroscopy across spatially resolved stellar surfaces aims at obtaining spectral-line profiles that are free from rotational broadening; the gradual changes of these profiles from disk center toward the stellar limb reveal properties of atmospheric fine structure, which are possible to model with 3D hydrodynamics. Aims. Previous such studies have only been carried out for the Sun but are now extended to other stars. In this work, profiles of photospheric spectral lines are retrieved across the disk of the planet-hosting star HD 209458 (G0 V). Methods. During exoplanet transit, stellar surface portions successively become hidden and differential spectroscopy provides spectra of small surface segments temporarily hidden behind the planet. The method was elaborated in Paper I, with observable signatures quantitatively predicted from hydrodynamic simulations. Results. From observations of HD 209458 with spectral resolution λ/ Δλ ~ 80 000, photospheric Fe I line profiles are obtained at several center-to-limb positions, reaching adequately high S/N after averaging over numerous similar lines. Conclusions. Retrieved line profiles are compared to synthetic line profiles. Hydrodynamic 3D models predict, and current observations confirm, that photospheric absorption lines become broader and shallower toward the stellar limb, reflecting that horizontal velocities in stellar granulation are greater than vertical velocities. Additional types of 3D signatures will become observable with the highest resolution spectrometers at large telescopes.
  • 关键词:enstars: atmospherestechniques: spectroscopicline: profileshydrodynamicsplanets and satellites: gaseous planetsstars: solar-type
国家哲学社会科学文献中心版权所有