首页    期刊浏览 2025年08月24日 星期日
登录注册

文章基本信息

  • 标题:Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models
  • 作者:Andrews, Isaiah ; Mikusheva, Anna
  • 期刊名称:Quantitative Economics
  • 电子版ISSN:1759-7331
  • 出版年度:2015
  • 卷号:6
  • 期号:1
  • 页码:123-152
  • DOI:10.3982/QE331
  • 语种:English
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:

    This paper examines the issue of weak identification in maximum likelihood, motivated by problems with estimation and inference in a multidimensional dynamic stochastic general equilibrium model. We show that two forms of the classical score (Lagrange multiplier) test for a simple hypothesis concerning the full parameter vector are robust to weak identification. We also suggest a test for a composite hypothesis regarding a subvector of parameters. The suggested subset test is shown to be asymptotically exact when the nuisance parameter is strongly identified. We pay particular attention to the question of how to estimate Fisher information and we make extensive use of martingale theory.

  • 关键词:Maximum likelihood ; C(α) test ; score test ; weak identification ; C32
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有