首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Map-Based Localization Method for Autonomous Vehicles Using 3D-LIDAR * * This work is supported in part by the National Natural Science Foundation of China under Grant No. 61473209.
  • 本地全文:下载
  • 作者:Liang Wang ; Yihuan Zhang ; Jun Wang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:276-281
  • DOI:10.1016/j.ifacol.2017.08.046
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractPrecise and robust localization is a significant task for autonomous vehicles in complex scenarios. The accurate position of autonomous vehicles is necessary for decision making and path planning. In this paper, a novel method is proposed to precisely locate the autonomous vehicle using a 3D-LIDAR sensor. First, a curb detection algorithm is performed. Next, a beam model is utilized to extract the contour of the multi-frame curbs. Then, the iterative closest point algorithm and two Kalman filters are employed to estimate the position of autonomous vehicles based on the high-precision map. Finally, experimental results demonstrate the accuracy and robustness of the proposed method.
  • 关键词:KeywordsAutonomous vehiclevehicle localization3D-LIDARcurb detectionmap matching
国家哲学社会科学文献中心版权所有