首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Diagnosability improvement of dynamic clustering through automatic learning of discrete event models
  • 本地全文:下载
  • 作者:Nathalie A. Barbosa ; Louise Travé-Massuyès ; Victor H. Grisales
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:1037-1042
  • DOI:10.1016/j.ifacol.2017.08.214
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper deals with the problem of improving data-based diagnosis of continuous systems taking advantage of the system control information represented as discrete event dynamics. The approach starts from dynamic clustering results and, combining the information about operational modes, automatically generates a discrete event system that improves clustering results interpretability for decision-making purposes and enhances fault detection capabilities by the inclusion of event related dynamics. The generated timed discrete event system is adaptive thanks to the dynamic nature of the clusterer from which it was learned, namelyDyClee. The timed discrete event system brings valuable temporal information to distinguish behaviors that are non-diagnosable based solely on the clustering itself.
  • 关键词:KeywordsClusteringDESDiagnosabilityMachine learningSituation assessment
国家哲学社会科学文献中心版权所有