首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Multivariable Recursive Subspace Identification with Application to Artificial Pancreas Systems
  • 本地全文:下载
  • 作者:I. Hajizadeh ; I. Hajizadeh ; M. Rashid
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:886-891
  • DOI:10.1016/j.ifacol.2017.08.268
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractDesigning a fully automated artificial pancreas (AP) system is challenging. Changes in the glucose-insulin dynamics in the human body over time, and the inter-subject and day-to-day variability of people with type 1 diabetes (T1D) are two important factors that would highly undermine the performance of an AP that is based on time-invariant and non-individualized models. People with T1D show different responses to carbohydrate intake, insulin, physical activity and stress with day-to-day variability present between or within specific patients. Thus, the control law in an AP system requires a reliable time-varying individualized model to perform efficiently. In this work, a novel recursive identification approach called a Predictor-Based Subspace Identification (PBSID) method is used for identifying a linear time-varying glucose-insulin model for each individual. Model identification and validation are based on clinical data from closed-loop experiments. The models are evaluated by means of various performances indices: Variance Accounted For (VAF), Root mean square error (RMSE), Normalized root mean square error (NRMSE) and Normalized mean square error (NMSE). The proposed method provides a stable time-varying state space model over time. It can be also individualized for each patient by defining the order of the system correctly. The approach proposed in this work has shown a strong potential to identify a consistent glucose-insulin model in real time for use in an AP system.
  • 关键词:KeywordsModelingidentificationArtificial pancreasBiomedical systemSubspace methodsRecursive identificationLinear systems
国家哲学社会科学文献中心版权所有