首页    期刊浏览 2024年11月06日 星期三
登录注册

文章基本信息

  • 标题:Learning Model Predictive Control for Iterative Tasks: A Computationally Efficient Approach for Linear System
  • 本地全文:下载
  • 作者:Ugo Rosolia ; Francesco Borrelli
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:3142-3147
  • DOI:10.1016/j.ifacol.2017.08.324
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractA Learning Model Predictive Controller (LMPC) for linear system is presented. The proposed controller builds on previous work on nonlinear LMPC and decreases its computational burden for linear system. The control scheme is reference-free and is able to improve its performance by learning from previous iterations. A convex safe set and a terminal cost function are used in order to guarantee recursive feasibility and non-increasing performance at each iteration. The paper presents the control design approach, and shows how to recursively construct the convex terminal set and the terminal cost from state and input trajectories of previous iterations. Simulation results show the effectiveness of the proposed control logic.
  • 关键词:KeywordsLearningModel Predictive ControlLMPCConvex Optimization
国家哲学社会科学文献中心版权所有