首页    期刊浏览 2025年07月07日 星期一
登录注册

文章基本信息

  • 标题:Parameter Tuning for Prediction-based Quadcopter Trajectory Planning using Learning Automata
  • 本地全文:下载
  • 作者:Peter T. Jardine ; Sidney Givigi ; Shahram Yousefi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:2341-2346
  • DOI:10.1016/j.ifacol.2017.08.420
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper presents a target tracking technique for a quadcopter based on Model Predictive Control (MPC) tuned using machine learning. Specifically, it uses learning automata to select the weighting parameters of the objective function such that they minimize tracking error. It develops an approximate linear state-space model for the quadcopter dynamics by linearizing around a hover condition. The optimum sequence of control actions is expressed as perturbations on a stabilizing feedback law expanded over a finite prediction horizon. Simulation results demonstrate the learned weighting parameters can be used to provide optimized trajectories when implemented as receding horizon MPC. Furthermore, a comparison with previous work demonstrates improved tracking performance.
  • 关键词:KeywordsModel Predictive ControlQuadcopterReinforcement Learning
国家哲学社会科学文献中心版权所有