首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Car-following Behavior Model Learning Using Timed Automata
  • 本地全文:下载
  • 作者:Yihuan Zhang ; Qin Lin ; Jun Wang
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:2353-2358
  • DOI:10.1016/j.ifacol.2017.08.423
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractLearning driving behavior is fundamental for autonomous vehicles to “understand” traffic situations. This paper proposes a novel method for learning a behavioral model of car-following using automata learning algorithms. The model is interpretable for car-following behavior analysis. Frequent common state sequences are extracted from the model and clustered as driving patterns. The Next Generation SIMulation dataset on the I-80 highway is used for learning and evaluating. The experimental results demonstrate high accuracy of car-following model fitting.
  • 关键词:Keywordsreal-time automata learningstate sequence clusteringcar-following behaviorpiece-wise fitting
国家哲学社会科学文献中心版权所有