首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:SVM Classification and Kalman Filter Based Estimation of the Tire-Road Friction Curve
  • 本地全文:下载
  • 作者:Enrico Regolin ; Antonella Ferrara
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:3382-3387
  • DOI:10.1016/j.ifacol.2017.08.589
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAn estimation method is proposed for the maximum tire-road friction coefficient µMAXand its corresponding wheel-slip λpeak. After a preliminary analysis of Burckhardt’s model analytic properties, a machine learning approach involving Support Vector Machines is used to classify the curves representing different road surfaces. A metric to evaluate the misclassification risk is used to determine boundaries for the curve coefficients. These boundaries are then used to form linear inequality constraints for two recursive parameter estimation algorithms based on the Kalman Filter, in its Extended and Unscented forms. Finally, the proposed method is evaluated via simulations in Matlab environment.
  • 关键词:KeywordsAutomotive controlNonlinear parameter identificationMachine learningExtended Kalman filters
国家哲学社会科学文献中心版权所有