首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Adaptive Bayesian Sensor Motion Planning for Hazardous Source Term Reconstruction
  • 本地全文:下载
  • 作者:Michael Hutchinson ; Hyondong Oh ; Wen-Hua Chen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:2812-2817
  • DOI:10.1016/j.ifacol.2017.08.632
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThere has been a strong interest in emergency planning in response to an attack or accidental release of harmful chemical, biological, radiological or nuclear substances. Under such circumstances, it is of paramount importance to determine the location and release rate of the hazardous source to forecast the future harm it may cause and employ methods to minimize the disturbance. In this paper, a sensor data collection strategy is proposed whereby an autonomous mobile sensor is guided to address such a problem with a high degree of accuracy and in a short amount of time. First, the parameters of the release source are estimated using the Markov chain Monte Carlo sampling approach. The most informative manoeuvre from the set of possible choices is then selected using the concept of maximum entropy sampling. Numerical simulations demonstrate the superior performance of the proposed algorithm compared to traditional approaches in terms of estimation accuracy and the number of measurements required.
  • 关键词:KeywordsAutonomous vehiclesInverse problemInformation fusionParameter estimationOptimal experiment designStatistical inferenceMotion planning
国家哲学社会科学文献中心版权所有