首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Tuning of Hyperparameters for FIR models – an Asymptotic Theory
  • 本地全文:下载
  • 作者:Biqiang Mu ; Tianshi Chen ; Lennart Ljung
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:2818-2823
  • DOI:10.1016/j.ifacol.2017.08.633
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractRegularization of simple linear regression models for system identification is a recent much-studied problem. Several parameterizations (“kernels”) of the regularization matrix have been suggested together with different ways of estimating (“tuning”) its parameters. This contribution defines an asymptotic view on the problem of tuning and selection of kernels. It is shown that the SURE approach to parameter tuning provides an asymptotically consistent estimate of the optimal (in a MSE sense) hyperparameters. At the same time it is shown that the common marginal likelihood (empirical Bayes) approach does not enjoy that property.
  • 关键词:KeywordsLinear system identificationGaussian process regressionKernel-based regularizationMarginal likelihood estimatorsStein’s unbiased risk estimators
国家哲学社会科学文献中心版权所有