首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Comparison of Regularized Least-Squares Approach and Predictive Error Method: Case Studies
  • 本地全文:下载
  • 作者:Mengyuan Fang ; Yucai Zhu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:3989-3994
  • DOI:10.1016/j.ifacol.2017.08.772
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThere are recently studies on linear system identification with high order finite impulse response (FIR) models using the regularized least-squares approach. The regularized approach allows some bias to reduce variance so that the error of the regularized FIR model is minimized. This paper concerns the comparison between the regularized least-square approach and the traditional predictive error method (PEM), using a number of case studies. More cases are included than those used by the authors of the regularized approach, for example, non-white input signal, non-white output noise, low-order systems and closed-loop tests. In most cases PEM outperforms the regularized approach.
  • 关键词:Keywordsregularizationpredictive error methodbias-variance trade-offasymptotic method
国家哲学社会科学文献中心版权所有