首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Singular Perturbations of Volterra Equations with Periodic Nonlinearities. Stability and Oscillatory Properties
  • 本地全文:下载
  • 作者:Vera B. Smirnova ; Anton V. Proskurnikov
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:8454-8459
  • DOI:10.1016/j.ifacol.2017.08.812
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractSingularly perturbed integro-differential Volterra equations with MIMO periodic nonlinearities are considered, which describe synchronization circuits (such as phase- and frequency-locked loops) and many other “pendulum-like” systems. Similar to the usual pendulum equation, such systems are typically featured by infinite sequences of equilibria points, and none of which can be globally asymptotically stable. A natural extension of the global asymptotic stability is the gradient-like behavior, that is, convergence of any solution to one of the equilibria. In this paper, we offer an efficient frequency-domain criterion for gradientlike behavior. This criterion is not only applicable to a broad class of infinite-dimensional systems with periodic nonlinearities, but in fact ensures the equilibria set stability under singular perturbation. In particular, the proposed criterion guarantees the absence of periodic solutions that are considered to be undesirable in synchronization systems. In this paper we also discuss a relaxed version of this criterion, which guarantees the absence of “high-frequency” periodic solutions, whose frequencies lie beyond a certain bounded interval.
  • 关键词:KeywordsSingular perturbationgradient-like behaviorperiodic solutionintegro-differential equationphase synchronization systems
国家哲学社会科学文献中心版权所有