首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:State Space Estimation Method for the Identification of an Industrial Robot Arm
  • 本地全文:下载
  • 作者:M. Brunot ; A. Janot ; F. Carrillo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:9815-9820
  • DOI:10.1016/j.ifacol.2017.08.892
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we study the identification of industrial robot dynamic models. Since the models are linear with respect to the parameters, the usual identification technique is based on the Least-Squares method. That requires a careful preprocessing of the data to obtain consistent estimates of the dynamic parameters. The preprocessing mainly consists in estimating the joint velocities and accelerations from the measured joint positions. In this paper, we carefully detail this process and propose a new procedure based on Kalman filtering and fixed interval smoothing. This new technique is compared to usual one with experimental data considering an industrial robot arm. The obtained results show that the proposed technique is a credible alternative, especially if the system bandwidth is unknown.
  • 关键词:KeywordsRobots identificationSystem identificationClosed-loop identificationLeast-squares identificationParameter identificationKalman filters
国家哲学社会科学文献中心版权所有