首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Fault-Tolerant Economic Model Predictive Control Using Empirical Models * * Financial support from the National Science Foundation and the Department of Energy is gratefully acknowledged
  • 本地全文:下载
  • 作者:Anas Alanqar ; Helen Durand ; Panagiotis D. Christofides
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:3517-3523
  • DOI:10.1016/j.ifacol.2017.08.940
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this work, we present a data-driven methodology to overcome actuator faults using a model-based feedback controller that optimizes process economics termed economic model predictive control (EMPC). Specifically, we utilize a moving horizon error detector that quantifies prediction errors and triggers updating the empirical model used for state predictions in the EMPC on-line using the most recent input/output data collected after the fault when significant prediction errors occur due to the loss of an actuator. The proposed approach is applied to a catalytic chemical reactor example where an actuator fault occurs, affecting the coolant temperature. The proposed scheme was able to reduce prediction errors caused by the actuator loss by replacing the model within the EMPC with a more accurate model, resulting in improved economic performance compared to not updating the model.
  • 关键词:Keywordsnonlinear systemson-line model identificationeconomic model predictive controlprocess controloptimizationfault-tolerance
国家哲学社会科学文献中心版权所有