首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Fault Detection Algorithms based on Decomposed Tensor Representations for Qualitative Models * * Results have been developed during the project OBSERVE, funded by the Federal Ministry of Economic Affairs and Energy, Germany.
  • 本地全文:下载
  • 作者:Thorsten Müller-Eping ; Gerwald Lichtenberg ; Vivien Vogelmann
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:5622-5629
  • DOI:10.1016/j.ifacol.2017.08.1109
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe paper proposes two fault detection algorithms for qualitative models based on stochastic automata. We will show that storing the transition probabilities of the stochastic automaton in tensor format enables a great potential in avoiding the major limitation of the approach - the exponential growth of the number of transitions of the automaton with an increasing number of system signals. The underlying structure of the behaviour tensor of the automaton will be exploited by CP and TT decompositions which allow a reduction in the amount of data to be stored by an order of magnitude. We will provide a proof of both algorithms and show their functionality by means of a real system example.
  • 关键词:KeywordsFault detectionQualitative modelsStochastic automataTT decompositionCP decomposition
国家哲学社会科学文献中心版权所有