首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Dual Actuation of Fast Scanning Axis for High-speed Atomic Force Microscopy
  • 本地全文:下载
  • 作者:Shingo Ito ; Daniel Neyer ; Juergen Steininger
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:7633-7638
  • DOI:10.1016/j.ifacol.2017.08.1156
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn order to overcome the limiting trade-off between the imaging speed and scanning range of an atomic force microscope (AFM), this paper combines two piezoelectric actuators as a dual stage actuator (DSA) for a lateral motion (X axis) of the AFM probe with respect to the sample. As the first actuator, a piezoelectric tube actuator of the commercial AFM is utilized. Although the actuator realizes a relatively large actuation range, it has the first mechanical resonance at a low frequency of 2.5 kHz. In the case of high-speed imaging, this resonance impairs the imaging speed and quality. In order to overcome this, a piezoelectric shear actuator with the first resonance at 19 kHz is selected as the second actuator, combined in the commercial AFM. To generate the X-axis motion by synchronizing those two actuators, this paper proposes a feedforward control design for DSAs in the frequency domain, which takes into account the actuator dynamics. In the proposed approach, triangular raster scan is composed as a Fourier series by individually adjusting the complex Fourier coefficients for each actuator. The effectiveness of the DSA and its control is validated by experimental AFM imaging at a scan rate of 200 Hz, where the lowest frequency component is applied to the tube actuator and the other higher components of the scanning signal to the high-speed shear actuator.
  • 关键词:KeywordsMicroNano Mechatronic SystemsMotion Control Systems
国家哲学社会科学文献中心版权所有