首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Proximal Limited-Memory Quasi-Newton Methods for Scenario-based Stochastic Optimal Control
  • 本地全文:下载
  • 作者:Ajay Kumar Sampathirao ; Pantelis Sopasakis ; Alberto Bemporad
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:11865-11870
  • DOI:10.1016/j.ifacol.2017.08.1372
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractStochastic optimal control problems are typically of rather large scale involving millions of decision variables, but possess a certain structure which can be exploited by first-order methods such as forward-backward splitting and the alternating direction method of multipliers (ADMM). In this paper, we use theforward-backward envelope, a real-valued continuously differentiable penalty function, to recast the dual of the original nonsmooth problem as an unconstrained problem which we solve via the limited-memory BFGS algorithm. We show that the proposed method leads to a significant improvement of the convergence rate without increasing much the computational cost per iteration.
  • 关键词:KeywordsConvex optimizationstochastic optimal controllarge-scale optimizationproximal Newton methods
国家哲学社会科学文献中心版权所有