首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Input selection in N2SID using group lasso regularization
  • 本地全文:下载
  • 作者:Måns Klingspor ; Anders Hansson ; Johan Löfberg
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:9474-9479
  • DOI:10.1016/j.ifacol.2017.08.1472
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractInput selection is an important and oftentimes difficult challenge in system identification. In order to achieve less complex models, irrelevant inputs should be methodically and correctly discarded before or under the estimation process. In this paper we introduce a novel method of input selection that is carried out as a natural extension in a subspace method. We show that the method robustly and accurately performs input selection at various noise levels and that it provides good model estimates.
  • 关键词:KeywordsInput selectionSystem identificationState-space modelsN2SIDSubspace methodsSignal-to-noise ratio
国家哲学社会科学文献中心版权所有