首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Analysis and Mitigation of Bias Injection Attacks Against a Kalman Filter
  • 本地全文:下载
  • 作者:Jezdimir Miloševič ; Takashi Tanaka ; Henrik Sandberg
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:8393-8398
  • DOI:10.1016/j.ifacol.2017.08.1564
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we consider a state estimation problem for stochastic linear dynamical systems in the presence of bias injection attacks. A Kalman filter is used as an estimator, and a chi-squared test is used to detect anomalies. We first show that the impact of the worst-case bias injection attack in a stochastic setting can be analyzed by a deterministic quadratically constrained quadratic program, which has an analytical solution. Based on this result, we propose a criterion for selecting sensors to secure in order to mitigate the attack impact. Furthermore, we derive a condition on the necessary number of sensors to secure in order for the impact to be less than a desired threshold.
  • 关键词:KeywordsCyber-Physical SystemsCyber-SecurityCyber-Attacks
国家哲学社会科学文献中心版权所有