首页    期刊浏览 2025年09月16日 星期二
登录注册

文章基本信息

  • 标题:A Kolmogorov-Smirnov Test to Detect Changes in Stationarity in Big Data * * This work was supported in part by the National Natural Science Foundation of China under Grants No. 61573353, No.61533017, and No. 61603382.
  • 本地全文:下载
  • 作者:Dongbin Zhao ; Li Bu ; Cesare Alippi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:14260-14265
  • DOI:10.1016/j.ifacol.2017.08.1821
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe paper proposes an effective change detection test for online monitoring data streams by inspecting the least squares density difference (LSDD) features extracted from two non-overlapped windows. The first window contains samples associated with the pre-change probability distribution function (pdf) and the second one with the post-change one (that differs from the former if a change in stationarity occurs). This method can detect changes by also controlling the false positive rate. However, since the window sizes is fixed after the test has been configured (it has to be small to reduce the execution time), the method may fail to detect changes with small magnitude which need more samples to reach the requested level of confidence. In this paper, we extend our work to the Big Data framework by applying the Kolmogorov-Smirnov test (KS test) to infer changes. Experiments show that the proposed method is effective in detecting changes.
  • 关键词:Keywordschange detection testLSDDKS test
国家哲学社会科学文献中心版权所有