首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Sensor Anomaly Detection and Recovery in the Roll Dynamics of a Delta-Wing Aircraft via Monte Carlo and Maximum Likelihood Methods * * This work is supported by The Boeing Company
  • 本地全文:下载
  • 作者:Mohammad Deghat ; Evangelia Lampiri
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:12791-12796
  • DOI:10.1016/j.ifacol.2017.08.1836
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper studies the problem of sensor anomaly detection, estimation and recovery for the roll dynamic model of a generic delta-wing aircraft. The proposed algorithm employs particle filtering and maximum likelihood methods to detect and estimate the anomaly. The estimated anomaly is then used to correct the sensor readings. It is assumed that both the system model and sensor outputs are corrupted by noise, which are not necessarily Gaussian. Simulation results are presented to show the performance of the proposed algorithm.
国家哲学社会科学文献中心版权所有