首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:High-dimensional Online Adaptive Filtering
  • 本地全文:下载
  • 作者:Sholeh Yasini ; Kristiaan Pelckmans
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:14106-14111
  • DOI:10.1016/j.ifacol.2017.08.1851
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWhile recent advances in online learning arising from the universal prediction perspective have led to algorithms with prediction performance guarantee, these techniques are not able to cope with high-dimensional data. This paper analyses a random projection gradient descent (RP-GD) algorithm which addresses this challenge and yields low theoretical regret bound and computationally efficient algorithm. It is shown that the performance of the algorithm converges to the performance of the best offline, computationally complex, high-dimensional algorithm in hindsight.
  • 关键词:KeywordsHigh-dimensional dataonline gradient descentrandom projectionregret bound
国家哲学社会科学文献中心版权所有