摘要:AbstractIn this paper we consider a distributed optimization scenario in which a set of agents has to solve a convex optimization problem with separable cost function, local constraint sets and a coupling inequality constraint. We propose a novel distributed algorithm based on a relaxation of the primal problem and an elegant exploration of duality theory. Despite its complex derivation based on several duality steps, the distributed algorithm has a very simple and intuitive structure. That is, each node solves a local version of the original problem relaxation, and updates suitable dual variables. We prove the algorithm correctness and show its effectiveness via numerical computations.