首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Parameter Identification and Model Validation of a Macroscopic Traffic Model
  • 本地全文:下载
  • 作者:Elvira Thonhofer ; Martin Fuhrmann ; Stefan Jakubek
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:12835-12840
  • DOI:10.1016/j.ifacol.2017.08.1933
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAdaptive traffic control algorithms require an underlying traffic model. A suitable macroscopic traffic model has previously been developed by the authors. In this work the proposed method of parameter identification and the traffic model are validated with real live traffic data PeMS (Performance Measurement System) provided by the California Institute of Transportation. The proposed method of parameter identification utilizes a genetic algorithm (GA) where the difference between measurement data and simulation data are minimized. Parameter sensitivity and identifiability are investigated via the Fisher Information Matrix. The macroscopic traffic model based on the identified parameters is used to simulate traffic for a given time period at the test field. Results are presented and cross-validated with both the provided data of the PeMS data base and simulation results of the stochastic cell transmission model.
  • 关键词:KeywordsTraffic modelOptimizationParameter estimationSensitvity analysisValidation
国家哲学社会科学文献中心版权所有