首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Maximum Entropy Estimation via Gauss-LP Quadratures * * Research was supported by the Swiss National Science Foundation under grant ”P2EZP2_165264” and by the European Commission under the project SPEEDD.
  • 本地全文:下载
  • 作者:Maxime Thély ; Tobias Sutter ; Peyman Mohajerin Esfahani
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:10470-10475
  • DOI:10.1016/j.ifacol.2017.08.1977
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe present an approximation method to a class of parametric integration problems that naturally appear when solving the dual of the maximum entropy estimation problem. Our method builds up on a recent generalization of Gauss quadratures via an infinite-dimensional linear program, and utilizes a convex clustering algorithm to compute an approximate solution which requires reduced computational effort. It shows to be particularly appealing when looking at problems with unusual domains and in a multi-dimensional setting. As a proof of concept we apply our method to an example problem on the unit disc.
  • 关键词:KeywordsEntropy maximizationconvex clusteringlinear programmingimportance sampling
国家哲学社会科学文献中心版权所有