首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Convergence for SISO ILC Systems with Locally Lipschitz Nonlinear Dynamics
  • 本地全文:下载
  • 作者:Deyuan Meng ; Kevin L. Moore
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:12083-12088
  • DOI:10.1016/j.ifacol.2017.08.2156
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis paper is devoted to iterative learning control (ILC) for single-input single-output (SISO), affine nonlinear systems with locally Lipschitz dynamics and subject to iteration-varying uncertainties arising from external disturbances and initial state shifts. By adopting a P-type update law, a necessary and sufficient condition is proposed to ensure the convergence of nonlinear SISO ILC. It is shown that the ILC process converges robustly with the final error bound depending continuously upon the bounds of iteration-varying uncertainties. Simulations illustrate the validity of the convergence results.
  • 关键词:KeywordsIterative learning controlnonlinear systemslocally Lipschitz condition
国家哲学社会科学文献中心版权所有