首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Fuzzy Inference System Approach Using Clustering and Differential Evolution Optimization Applied to Identification of a Twin Rotor System
  • 本地全文:下载
  • 作者:Leandro dos Santos Coelho ; Marcelo Wicthoff Pêssoa ; Viviana Cocco Mariani
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:13102-13107
  • DOI:10.1016/j.ifacol.2017.08.2162
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, a Takagi-Sugeno-Kang (TSK) fuzzy inference system using fuzzy c-means clustering and differential evolution optimization is proposed and validated when applied to a twin rotor system (TRS). The TRS is perceived as a challenging problem due to its strong cross coupling between horizontal and vertical axes. The design procedure of the TSK fuzzy approach for TRS is detailed. According to the identification results obtained by applying the TSK fuzzy approach and a nonlinear autoregressive with moving average and exogenous inputs (NARMAX) model, the effectiveness of the proposed fuzzy system design is demonstrated through validation tests.
  • 关键词:KeywordsNonlinear identificationfuzzy systemdifferential evolutionevolutionary computation
国家哲学社会科学文献中心版权所有