首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Energy Efficiency Monitoring in a Coal Boiler Based on Optical Variables and Artificial Intelligence
  • 本地全文:下载
  • 作者:Hugo O. Garcés ; José Abreu ; Pedro Gómez
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:13904-13909
  • DOI:10.1016/j.ifacol.2017.08.2209
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this work, we present the fundamentals of the estimation of the energy efficiency in an industrial coal boiler based in novel optical combustion diagnostics variables and several machine learning regression methods. The total radiationRadtand flame temperatureTfwere considered. The inclusion of those variables allows to increase the overall performance in the estimation of the energy efficiency. The comparison in the performance of the tested methods for regression, suggest that Extreme Learning Machines in combination with Partial Least Squares for regression, lead to the best performance with a Pearson correlation coefficientR≈ 0.7 in the test data set.
  • 关键词:KeywordsProcess control applicationsMonitoringperformance assessmentModelingsimulation of power systemsNonlinear system identificationFuzzyneural systems relevant to controlidentification
国家哲学社会科学文献中心版权所有