首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Structural identification of biochemical reaction networks from population snapshot data
  • 本地全文:下载
  • 作者:Eugenio Cinquemani
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:12629-12634
  • DOI:10.1016/j.ifacol.2017.08.2227
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper we investigate how randomness in biochemical network dynamics improves identification of the network structure. Focusing on the case of so-called population snapshot data, we set out the problem as that of reconstructing the unknown stoichiometry matrix and rate parameters of the network in the case of state-affine reaction rates. We discuss what additional information is conveyed by the observation of second-order moments of the system species relative to the sole knowledge of their mean profiles. We then illustrate the impact of this additional piece of information in the reconstruction of an unknown network structure by means of a simple numerical example.
  • 关键词:KeywordsIntrinsic noiseGenetic regulatory networkStochastic processIdentifiability
国家哲学社会科学文献中心版权所有