首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Large-Scale Distributed Kalman Filtering via an Optimization Approach
  • 本地全文:下载
  • 作者:Mathias Hudoba de Badyn ; Mehran Mesbahi
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:10742-10747
  • DOI:10.1016/j.ifacol.2017.08.2268
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractLarge-scale distributed systems such as sensor networks, often need to achieve filtering and consensus on an estimated parameter from high-dimensional measurements. Running a Kalman filter on every node in such a network is computationally intensive; in particular the matrix inversion in the Kalman gain update step is expensive. In this paper, we extend previous results in distributed Kalman filtering and large-scale machine learning to propose a gradient descent step for updating an estimate of the error covariance matrix; this is then embedded and analyzed in the context of distributed Kalman filtering. We provide properties of the resulting filters, in addition to a number of applications throughout the paper.
  • 关键词:KeywordsMachine learningfast Kalman algorithmsstate estimationgradient methods
国家哲学社会科学文献中心版权所有