首页    期刊浏览 2025年07月12日 星期六
登录注册

文章基本信息

  • 标题:Identification of dynamical systems population described by a mixed effect ARX model structure
  • 本地全文:下载
  • 作者:Levy Batista ; El Hadi Djermoune ; Thierry Bastogne
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:13516-13520
  • DOI:10.1016/j.ifacol.2017.08.2342
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractSystem identification is a data-driven input-output modeling approach more and more used in biology and biomedicine. In this application context, several assays are repeated to estimate the response variability and reproducibility. The inference of the modeling conclusions to the whole population requires to account for the inter-individual variability within the modeling procedure. One solution consists of using mixed effects models but up to now no similar approach exists in the system identification literature. In this article, we propose a first solution based on an ARX (Auto Regressive model with eXternal inputs) structure using the EM (Expectation-Maximisation) algorithm for the estimation of the model parameters. Using the Fisher information matrix, the parameter standard errors are estimated; this allows for group comparison tests. Simulations show the relevance of this solution compared with a classical procedure of system identification repeated on each subject. Taking into account all the information available in the population allows to gather the parameters between individuals.
  • 关键词:KeywordsSystem identificationMixed effects modelsEM algorithmARX structurebio-signals analysis
国家哲学社会科学文献中心版权所有