摘要:AbstractThis paper studies a data-driven approach to detect faults in flight control systems of civil aircraft. A particular class of failures, referred to as Oscillatory Failure Cases (OFC), impacting the actuator servo loop has motivated the authors to consider a data-driven approach based on distance and correlation measures (see reference [Goupil et al.(2016). A data-driven approach to detect faults in the Airbus flight control system. IFAC-PapersOnLine, 49(17), 52-57] of this paper) leading to promising results compared to the state-of-the-art methods based on analytical redundancy. The present paper extends the formulation and the results of the considered OFC detection approach investigating Support Vector Machine (SVM) techniques to define a more accurate detector based on distance and correlation measures.