首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Contraction Analysis of Nonlinear Iterative Learning Control
  • 本地全文:下载
  • 作者:Felix H. Kong ; Ian R. Manchester
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:10876-10881
  • DOI:10.1016/j.ifacol.2017.08.2444
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIterative learning control (ILC) is widely used as a simple method for precise tracking of systems under repetitive conditions. ILC operates by “learning” from the previous iteration’s errors, correcting them over a number of iterations. However, the question of whether or not a nonlinear ILC system converges is still in general an open one. Assuming a state-space formulation, we use contraction analysis to formulate a convergence condition for ILC system as a linear matrix inequality (LMI). Finally, we compute a convergence certificate for a simple example involving “anticogging” a permanent-magnet synchronous motor driving a pendulum in simulation.
  • 关键词:Keywordsiterative learning controlcontraction analysislinear matrix inequalities
国家哲学社会科学文献中心版权所有