首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Particle Gibbs with Ancestor Sampling for Identification of Tire-Friction Parameters
  • 本地全文:下载
  • 作者:Karl Berntorp ; Stefano Di Cairano
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2017
  • 卷号:50
  • 期号:1
  • 页码:14849-14854
  • DOI:10.1016/j.ifacol.2017.08.2585
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractParticle Gibbs with Ancestor Sampling (PGAS) is a particle Markov chain Monte Carlo method (PMCMC) for Bayesian inference and learning. PGAS conditions on a reference-state trajectory in the underlying particle filter using ancestor sampling. In this paper, we leverage PGAS for identification of cornering-stiffness parameters in road vehicles only using production-grade sensors. The cornering-stiffness parameters are essential for describing the motion of the vehicle. We show how PGAS can be adapted to efficiently learn the stiffness parameters by conditioning on the noise-input trajectory instead of the state trajectory. We verify on a three-minute long experimental test drive that our method correctly identifies the tire-stiffness parameters.
  • 关键词:KeywordsParticle filterMonte Carlo methodFriction estimationSystem identification
国家哲学社会科学文献中心版权所有