首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Methods of Forecasting Based on Artificial Neural Networks/ Prognozēšanas metodes, kas balstītas uz mākslīgajiem neironu tīkliem/ Методы прогнозирования, основанные на искусственных нейронных сетях
  • 作者:Arthur Stepchenko ; Arkady Borisov
  • 期刊名称:Information Technology and Management Science
  • 印刷版ISSN:2255-9086
  • 电子版ISSN:2255-9094
  • 出版年度:2014
  • 卷号:17
  • 期号:1
  • 页码:25-31
  • DOI:10.1515/itms-2014-0003
  • 语种:English
  • 出版社:Walter de Gruyter GmbH
  • 摘要:This article presents an overview of artificial neural network (ANN) applications in forecasting and possible forecasting accuracy improvements. Artificial neural networks are computational models and universal approximators, which can be applied to the time series forecasting with a high accuracy. A great rise in research activities was observed in using artificial neural networks for forecasting. This paper examines multi-layer perceptrons (MLPs) - back-propagation neural network (BPNN), Elman recurrent neural network (ERNN), grey relational artificial neural network (GRANN) and hybrid systems - models that fuse artificial neural network with wavelets and autoregressive integrated moving average (ARIMA).
  • 关键词:ARIMA ANN ; forecasting ; GRANN_ARIMA ; WANN
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有