首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Improvement of solar-cycle prediction: Plateau of solar axial dipole moment
  • 本地全文:下载
  • 作者:H. Iijima ; H. Hotta ; S. Imada
  • 期刊名称:Astronomy & Astrophysics
  • 印刷版ISSN:0004-6361
  • 电子版ISSN:1432-0746
  • 出版年度:2017
  • 卷号:607
  • 页码:1-4
  • DOI:10.1051/0004-6361/201731813
  • 语种:English
  • 出版社:EDP Sciences
  • 摘要:Aims. We report the small temporal variation of the axial dipole moment near the solar minimum and its application to the solar-cycle prediction by the surface flux transport (SFT) model. Methods. We measure the axial dipole moment using the photospheric synoptic magnetogram observed by the Wilcox Solar Observatory (WSO), the ESA/NASA Solar and Heliospheric Observatory Michelson Doppler Imager (MDI), and the NASA Solar Dynamics Observatory Helioseismic and Magnetic Imager (HMI). We also use the SFT model for the interpretation and prediction of the observed axial dipole moment. Results. We find that the observed axial dipole moment becomes approximately constant during the period of several years before each cycle minimum, which we call the axial dipole moment plateau. The cross-equatorial magnetic flux transport is found to be small during the period, although a significant number of sunspots are still emerging. The results indicate that the newly emerged magnetic flux does not contribute to the build up of the axial dipole moment near the end of each cycle. This is confirmed by showing that the time variation of the observed axial dipole moment agrees well with that predicted by the SFT model without introducing new emergence of magnetic flux. These results allow us to predict the axial dipole moment at the Cycle 24/25 minimum using the SFT model without introducing new flux emergence. The predicted axial dipole moment at the Cycle 24/25 minimum is 60–80 percent of Cycle 23/24 minimum, which suggests the amplitude of Cycle 25 is even weaker than the current Cycle 24. Conclusions. The plateau of the solar axial dipole moment is an important feature for the longer-term prediction of the solar cycle based on the SFT model.
  • 关键词:enSun: activitySun: photospheresunspots
国家哲学社会科学文献中心版权所有