首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Bayesian Optimization-based Modular Indirect Adaptive Control for a Class of Nonlinear Systems
  • 本地全文:下载
  • 作者:Mouhacine Benosman ; Amir-massoud Farahmand
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2016
  • 卷号:49
  • 期号:13
  • 页码:253-258
  • DOI:10.1016/j.ifacol.2016.07.960
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe study in this paper the problem of adaptive trajectory tracking control for a class of nonlinear systems with parametric uncertainties. We propose to usea modular adaptive approach,where we first design a robust nonlinear state feedback which renders the closed loop input-to-state stable (ISS). The input is considered to be the estimation error of the uncertain parameters, and the state is considered to be the closed-loop output tracking error. We augment this robust ISS controller with a model-free learning algorithm to estimate the model uncertainties. We implement this method with a Bayesian optimization-based method called Gaussian Process Upper Confidence Bound (GP-UCB). The combination of the ISS feedback and the learning algorithms gives alearning-based modular indirect adaptive controller.We test the efficiency of this approach on a two-link robot manipulator example, under noisy measurements conditions.
国家哲学社会科学文献中心版权所有